
XAPP496 (v1.0) June 3, 2010 www.xilinx.com 1

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Summary The Memory Controller Block (MCB) is a dedicated embedded multi-port memory controller
that greatly simplifies the task of interfacing Spartan-6 devices to DDR3, DDR2, DDR, and
LPDDR memories. Spartan®-6 devices contain two to four MCBs, each of which can
implement a single component interface to a 4-bit, 8-bit, or 16-bit memory. Some applications
with higher memory bandwidth or density requirements benefit from using memory interfaces
wider than the 16-bits offered by a single MCB. This application note describes how to merge
the operation of two or more MCBs to implement effective 32-bit or wider memory interfaces.
Both MCBs must be in a single-port configuration mode. This application note and reference
design does not support merging MCBs configured in the multi-port configuration mode. The
associated reference design has been verified in hardware, and analyzed for both performance
and device utilization.

Introduction The MCB addresses the memory interface needs for the majority of Spartan-6 FPGA
applications by providing an interface to the most common, lowest-cost, and lowest-power
SDRAM memory standards. The MCB eliminates the complexities of communicating with
these memory devices, and presents a single-data rata (SDR) user interface to the rest of the
FPGA user logic. As shown in Figure 1, the MCB is a multi-port memory controller with up to six
available ports. Each port consists of a command interface and a read and/or write data
interface.

Application Note: Spartan-6 Family

XAPP496 (v1.0) June 3, 2010

Creating Wider Memory Interfaces Using
Multiple Spartan-6 FPGA
Memory Controller Blocks
Author: Derek Curd

X-Ref Target - Figure 1

Figure 1: MCB Block Diagram

xapp496_01_040510

32-Bit
Bidirectional

Arbiter

PHY
IO

B

Datapath

IP Wrapper

Spartan-6 FPGA

Memory

Controller

Calibration
Logic

DDR
DDR2
DDR3
LPDDR

32-Bit
Bidirectional

32-Bit
Unidirectional

32-Bit
Unidirectional

32-Bit
Unidirectional

32-Bit
Unidirectional

CMD FIFO 0
CMD FIFO 1

CMD FIFO 2

CMD FIFO 3
CMD FIFO 4

CMD FIFO 5

U
se

r
Lo

gi
c

D
ed

ic
at

ed
 R

ou
tin

g

I/O
 C

lo
ck

in
g

N
et

w
or

k

http://www.xilinx.com

Design Overview

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 2

The two 32-bit bidirectional and four 32-bit unidirectional native ports of the MCB can be
combined in five possible port configurations to create user interfaces of different widths. For
example, the native ports can be combined to create four 32-bit bidirectional ports, two 64-bit
bidirectional ports, or a single 128-bit bidirectional port. When used in a multi-port
configuration, the arbiter inside the MCB determines which port currently has access to the
external memory device.

The Memory Interface Generator (MIG) tool is used to create an external memory interface
based on the MCB. The MIG tool is a GUI wizard launched from within the CORE Generator™
application and guides the user through a series of steps to configure the MCB. The MIG tool
automatically generates the necessary RTL code, user constraints files (UCF), and script files
for simulation and implementation of an MCB memory interface.

The MCB supports memory densities up to 4 Gb and data rates up to 800 Mb/s (DDR2, DDR3
SDRAM), providing up to 12.8 Gb/s of peak bandwidth when interfacing to the widest
supported 16-bit single-component memory device. This provides more than enough memory
density and bandwidth for the majority of Spartan-6 FPGA applications.

Some systems require memory interface configurations that cannot be supported by a single
MCB. This application note explains how to take the RTL code produced by the MIG tool for two
(or more) separate MCB single-component interfaces, and merge them together to create an
effective wider interface for greater memory density and bandwidth.

Design
Overview

The Reference Design discussed in this application note only supports merging the operation
of MCBs that are each configured in a single-port mode, meaning that no arbitration is
occurring within each of the MCBs. Merging MCBs that are configured in one of the multi-port
modes is not recommended because of the complexities of having separate arbiters in each
MCB. If a multi-port interface is required, it is recommended that the procedures in this
document be performed to create a wider effective single-port interface, followed by a "soft"
multi-port interface with an arbiter built into the FPGA logic that can then be attached to the
wider single-port interface.

Figure 2 illustrates the concept of merging two MCBs to create a wider effective interface. Each
MCB still implements a single-component interface with completely separate address,
command, and data pins connected to the individual external memory devices. However, inside
the FPGA, some additional logic is used to combine the user interfaces of the MCBs to
implement a single, wider, user interface. The full read and write datapaths from each MCB are
merged to create twice the data bus width, and the address and command signals are
distributed to both MCBs to synchronize their operation.

X-Ref Target - Figure 2

Figure 2: Merging Two MCBs to Create a Wider Effective Interface

��������	
������������� ��������������
������������ �

���� ����������������������������
����
��������� !��

	"#$%&�%&'�(�&

http://www.xilinx.com

Implementation Details

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 3

Both MCBs must be configured in the exact same manner, and the external memory devices
must also be identical. This allows the two interfaces to operate in unison as much as possible.
However, it is possible, even likely, that the two external interfaces do not operate in complete
synchronization because of slight timing variations between the interfaces. For example, it is
likely that the two memory devices enter refresh at slightly different times, causing a potential
interruption of the data flow for one MCB with respect to the other.

This semi-synchronous behavior of the two MCBs does not present any issues with respect to
creating the wider internal user interface as long as care is taken to keep the MCBs
synchronized from the perspective of their individual user-interface ports. The MCB was
specifically designed with a user interface that allows asynchronous operation, meaning that
the user interface clock can have a completely undefined relationship with respect to the MCB
system clocks that are responsible for synchronizing the physical interface (PHY) of the MCB
with the external memory device. The FIFOs in the user interface manage the necessary clock
domain crossing. Refer to the clocking section of the Spartan-6 FPGA Memory Controller User
Guide [Ref 1] for more details.

The MCB is an in-order controller, both MCBs always execute read and write commands sent
by the common user interface, in the same sequence. As long as the FIFO status flags from
both MCBs are monitored and used to properly regulate the requests from the common user
interface (e.g., prevent any overflow or under-run conditions on the FIFOs), the two MCBs
operate in perfect unison from the perspective of the user application. The following section
explains the necessary logic additions to the common user interface to ensure that the two
MCBs stay in unison.

Implementation
Details

The user interface for a single MCB is designed to provide a means of communicating with an
external memory device by abstracting away the complex timing relationships and protocols
required to communicate with a DDR SDRAM memory device. The user interface uses a
collection of command and data FIFOs to allow the user application to issue memory
transaction requests using a recommended protocol.

The controller sub-block within the MCB then automatically translates these requests into the
necessary sequence of DDR device commands sent to the memory device, via the PHY of the
MCB, to execute the requested action. The MCB also automatically handles periodic refresh of
the memory device. From the perspective of the user application, the external DDR memory
resembles a byte-addressable SDR memory space. For more details on the user interface and
protocol, refer to the Spartan-6 FPGA Memory Controller User Guide [Ref 1].

Figure 3 shows the primary signals involved when combining the user interfaces of two MCBs.
The command port-related signals (cmd_byte_addr, cmd_bl, and cmd_instr) are connected in
parallel to both user interfaces, ensuring that both MCBs are simultaneously fed with the same
instruction, address, and data burst-length information. The read and write datapaths from the
individual MCB user interfaces are concatenated to create single data buses with twice the
width.

http://www.xilinx.com

Implementation Details

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 4

The next step is to synchronize the operation of the two user interfaces using logic to merge the
FIFO status and control signals. The FIFO status flags (cmd_full, wr_full, and rd_empty) from
the two MCBs are logically OR’ed together to create a single status flag indicating whether the
FIFOs in either MCB are in a full or empty condition. These combined status flags are then
used as acknowledge signals to gate the respective FIFO enable inputs (cmd_en, wr_en, and
rd_en) to ensure that the two user interfaces stay synchronized. The resulting local versions of
the enable signals are fed to both MCB user interfaces.

For example, if one of the two command path FIFOs becomes full, the acknowledge logic
prevents a new command from being entered into either MCB, keeping the user interfaces
synchronized. Similarly, if one of the read data FIFOs runs empty before the other, possibly
because its data flow is interrupted by a DRAM refresh, the acknowledge logic prevents
clocking-out any additional data from either MCB, maintaining synchronization.

The acknowledge logic ensures that the two user interfaces stay synchronized by regulating the
FIFO access directly, but the user application must to monitor the combined FIFO status flags
to ensure that memory transaction requests are paused when either of the MCBs indicates a
full or empty condition. Continuing to issue requests when the local MCB enables are
deactivated by the acknowledge logic results in lost transactions and invalid assumptions about
the associated data.

The clocking section of the Spartan-6 FPGA Memory Controller User Guide [Ref 1] describes
the recommended clocking architecture for the common case of a single MCB interfacing to a
single memory component. The clock infrastructure automatically generated by the MIG tool is

X-Ref Target - Figure 3

Figure 3: User Interface with Two MCBs

cmd_byte_addr
cmd_bl
cmd_instr

cmd_full
wr_full
rd_empty

cmd_full
wr_full

rd_empty

MCB 1
User

Interface

FPGA
Logic

cmd_en
wr_en
rd_en

cmd_en
wr_en
rd_en

rd_data[63:0]
wr_data[63:0]

rd_data[63:0]
wr_data[63:0]

cmd_byte_addr
cmd_bl
cmd_instr

cmd_byte_addr
cmd_bl

cmd_instr

cmd_full
wr_full
rd_empty

MCB 5
User

Interface

cmd_en
wr_en
rd_en

rd_data[63:0]
wr_data[63:0]

rd_data[63:0]
wr_data[63:0]

X496_03_033010

http://www.xilinx.com

Reference Design Guidelines

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 5

based on the recommended architecture. However, this scheme requires some modification
when using two or more MCBs in parallel.

Figure 4 illustrates two possible clocking architectures for combining MCBs. In Figure 4
part (a), two MCBs are shown on the same side of the device. This situation only occurs for
devices with four MCBs, two on each side. In this situation, the MCB system clocks driven by
BUFPLL_MCB, and the user interface clocks driven by a single BUFG, can be routed to both
the upper and lower MCBs. This is a requirement when using two MCBs on the same side of
the device, regardless of whether they are being merged into a common user interface. Since
there is only one BUFPLL_MCB signal and two available I/O clock routes per-side of the
device, there is no means to provide separate system clocks to MCBs on the same side.

In Figure 4 part (b), the two MCBs are on opposite sides of the device. This situation occurs for
devices with only two MCBs, or for devices with four MCBs when combining MCBs from
opposite sides of the device. In these scenarios, an additional BUFPLL_MCB signal is required
to drive the MCB(s) on the other side. There is one BUFPLL_MCB and two available I/O clock
routes that it can drive, per side.

Reference
Design
Guidelines

The directory structure and files found in the Reference Design are nearly identical to those
produced automatically by the MIG tool for a single MCB design, with a few exceptions. The
basic directory structure produced by the MIG tool and reproduced for this reference design is
shown in Figure 5. For details on the directory structure and files produced by the MIG tool,
refer to the Spartan-6 FPGA Memory Interface Solutions User Guide [Ref 2].

X-Ref Target - Figure 4

Figure 4: Two Possible Clocking Architectures for Combining MCBs

MCB 5

MCB 1
MCB 1MCB 3

PLL
CLK_IN

BUFPLL_MCB

SYSCLK_2X_180

SYSCLK_2X

x496_04_032610

PLL
CLK_IN

BUFPLL_MCB

BUFG

BUFG
BUFPLL_MCB

SYSCLK1_2X_180

SYSCLK1_2X

cmd_clk
wr_clk
rd_clk

cmd_clk
wr_clk
rd_clk

SYSCLK3_2X_180

SYSCLK3_2X

(a) MCBs on Same Side of Device (b) MCBs on Opposite Sides of Device

X-Ref Target - Figure 5

Figure 5: Basic Directory Structure Produced by the MIG Tool

x496_05_052110

dual_mcb
 example_design
 par
 rtl
 sim
 synth
 user_design
 par
 rtl
 sim
 synth

http://www.xilinx.com

Reference Design Guidelines

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 6

The MIG tool produces two kinds of MCB memory interface designs; the example_design, and
the user_design. The example_design contains all of the necessary RTL files, user constraint
files, and scripts, to simulate and implement a completely self-contained MCB-based memory
interface. The example_design includes a synthesizable hardware testbench, referred to as the
Traffic Generator, that can be used for demonstration or board bring-up purposes. The Traffic
Generator can create a variety of read/write stimulus patterns to exercise the MCB user
interface.

The user_design does not contain a hardware testbench, but is otherwise essentially the same
as the example_design. This version of the MIG design is ready for direct instantiation into an
overall system design. Refer to the first chapter of the Spartan-6 FPGA Memory Interface
Solutions User Guide [Ref 2] for more information on the Traffic Generator, example_design,
and user_design.

The Reference Design in this application note combines two MCBs on opposite sides of the
device, with each MCB configured to implement a 16-bit interface to a single 1 Gb DDR3
device. The user interface of each MCB is configured as a single 64-bit port. By combining the
two MCBs, the reference design effectively implements a 128-bit user interface to a 32-bit wide
DDR3 memory device. Any supported single-port configuration of the MCB can be combined in
a similar manner.

The most direct way to build the Reference Design is to create two MCB interfaces in a
single-pass using the MIG tool. Refer to the Spartan-6 FPGA Memory Interface Solutions User
Guide [Ref 2] for a complete step-by-step description of how to use the MIG tool to create an
MCB interface.

On the Memory Selection page of the MIG tool, select the same memory interface standard
(e.g., DDR3 SDRAM) for two of the MCBs. The same configuration choices (e.g., memory
device selection and speed, port configuration, termination scheme, etc.,) should be made for
both MCB interfaces throughout all steps of the MIG tool GUI flow.

When all of the necessary base files are generated in a single run using the MIG GUI wizard,
the modifications detailed in the following sections can be implemented to merge the two
separate MCB interfaces into a single design with twice the user interface and memory
interface width. These steps are documented from the perspective of the example_design, but
an analogous process can be used for the user_design.

New Wrapper Creation (memc13_wrapper.v)

The MIG tool produces two separate MCB wrapper files (memc1_wrapper.v and
memc3_wrapper.v). A new wrapper that merges the two MCB user interfaces into a single
interface is required to implement the reference design files. In this step, a new wrapper file
(memc13_wrapper.v) is created between these two base wrapper files and the top-level
example_top.v design file. Figure 5 illustrates the insertion of this new wrapper layer
instantiated in the example_top.v file, rather than the two individual base wrappers.

http://www.xilinx.com

Reference Design Guidelines

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 7

The new memc13_wrapper.v file addresses the following changes, most of which are notated
directly in the comments found in the reference design files:

• The new wrapper implements the connectivity and logic from Figure 3 to combine the
command and datapaths of the two separate user interface ports. Command signals are
sent to both MCBs, the combined datapath is a concatenation of the separate datapaths
from both MCBs. The wrapper also implements the OR of the FIFO status signals, and the
acknowledge logic to gate the FIFO enables.

• The wrapper passes common parameters to both base wrapper instantiations.

• External memory interface buses are kept separate because they remain as two distinct
component interfaces.

• The MCB system clock (sysclk1_2x and sysclk3_2x) and clock enables (pll_ce1_0 and
pll_ce3_0) are kept separate because they are driven by different BUFPLL_MCB blocks
when MCBs are on opposite sides of the device. This is not necessary when combining
MCBs on the same side of the device.

New Clock Infrastructure Block (memc13_infrastructure.v)

The MIG tool produces two clock infrastructure blocks in the base files
(memc1_infrastructure.v and memc3_infrastructure.v), although only one is
needed. One of these should be removed, and the other renamed to
memc13_infrastructure.v, and modified as follows:

• Add a second BUFPLL_MCB block driven by the same outputs of the PLL as the existing
BUFPLL_MCB block. This is not necessary when the MCBs are on the same side of the
device.

• Create a second set of system clocks (sysclk3_2x) and clock enables (pll_ce3_0) from the
outputs of the new BUFPLL_MCB block, and bring these out of the newly named
memc13_infrastructure.v block.

X-Ref Target - Figure 6

Figure 6: Insertion of New Wrapper Layer

Example Design (With Testbench) or User Design (No Testbench)

memc1_wrapper.v/vhd or memc3_wrapper.v/vhd

mcb_raw_wrapper.v/vhd�������� �	
��� ��� ������
Example Design (With Testbench) or User Design (No Testbench)

memc13_wrapper.v/vhd

memc1_wrapper.v/vhd

memc3_wrapper.v/vhd

����������������� ����� � ��! "�#$%� &$� � �'(�)� *��� ���� "�#$%� &$� � �'(+$' ,�- ./ ��� + �00�

http://www.xilinx.com

Reference Design Guidelines

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 8

New Testbench Block (memc13_tb_top.v)

The MIG tool produces two testbench blocks in the base files (memc1_tp_top.v and
memc3_top_tb.v) when only one is needed. One of these should be removed, and the other
renamed to memc13_tb_top.v, and modified as follows:

• Double the data port size (C_P0_DATA_PORT_SIZE) and mask size (C_P0_MASK_SIZE)
global parameters to accommodate the new user interface width.

• Increase the width of the error_status output by the new combined user interface width
(add 128 bits to the error_status bus if the combined user interface is 128-bits wide).

• Set the value of the local DWIDTH parameter (p0_DWIDTH) to the combined user
interface width (128 bits).

Changes to Top-Level Example Design Block (example_top.v)

In the base files produced by the MIG tool, the top-level design block (example_top.v)
contains two instantiations of the base MCB wrappers, clock infrastructure blocks, and test
bench blocks. The following changes implement a single, combined MCB interface using the
blocks modified in the previous steps:

• Keep input and output signals to the two external memory interfaces separate.

• Create a single set of all global and local parameters to be common for both MCB
interfaces (e.g., C13_MEMCLK_PERIOD instead of separate C1_MEMCLK_PERIOD and
C3_MEMCLK_PERIOD parameters). This set of common parameters should be passed
to the various sub-blocks.

• Double the data port size (C13_P0_DATA_PORT_SIZE) and mask size
(C13_P0_MASK_SIZE) global parameters to accommodate the new user interface width.

• Create a single set of input clocks and resets (e.g., c13_sys_clk_p and c13_sys_clk_n) to
replace the separate clocks for each interface.

• Modify the testbench address parameters as follows:

• Double the BEGIN_ADDRESS and END_ADDRESS parameters. For details,see the
code comments in the example_top.v file.

• Create common wires for internal signals (c13_calib_done) except for the system clocks
(c1_sysclk_2x), and clock enables (c1_pll_ce_0).

• The error and calib_done output signals should now be assigned directly to the c13_error
and c13_calib_done signals.

• Instantiate the new memc13_wrapper.v wrapper, new clock infrastructure block, and
new testbench block created in the previous steps (there should be only one copy of
each), and connect to the required signals.

Other Changes for Simulation and Implementation

Additional changes are required to make the reference design files suitable for simulation and
design implementation:

• In the sim/functional sub-directory, the sim_tb_top.v file must be modified to
accommodate the signal changes to the example_top.v file, including the generation of
a single set of clock and reset signals.

• In the par sub-directory, the example_top.ucf file must be modified to accommodate
the signal changes to the example_top.v file, including specifying a single set of clock
and reset signals.

http://www.xilinx.com

Design Utilization and Performance

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 9

• The following manual modification to the Traffic Generator is required:

Open the mcb_traffic_gen.v module provided in the
example_design/rtl/traffic_gen directory. Locate the following code (starting on
line 317):

 MIG 3.4 Code:

 reg mcb_rd_empty;
 always @ (mcb_rd_empty_i, mcb_rd_empty_r)
 if (FAMILY == "SPARTAN6")
 mcb_rd_empty = mcb_rd_empty_r;
 else
 mcb_rd_empty = mcb_rd_empty_i;

 reg mcb_wr_full;
 always @ (mcb_wr_full_i, mcb_wr_full_r1)
 if (FAMILY == "SPARTAN6")
 mcb_wr_full = mcb_wr_full_r1;
 else
 mcb_wr_full = mcb_wr_full_i;

Replace with:

 Workaround Code:
 wire mcb_rd_empty;
 assign mcb_rd_empty = mcb_rd_empty_i;

 wire mcb_wr_full;
 assign mcb_wr_full = mcb_wr_full_i;

Design
Utilization and
Performance

Table 1 shows the design utilization and performance metrics for the associated reference
design.

Table 1: Design Utilization and Performance Metrics

Parameters Speed
Grade Specifications and Details

Maximum data rate:
external interface (by speed grade)

-2 Refer to the Performance Interface section
of DS162, Spartan-6 Data Sheet. [Ref 3]-3

Typical achievable data rate:
user interface (by speed grade)

-2 87 MHz(1)

-3 100 MHz(1)

Target Spartan-6 FPGA XC6SLX16

Device utilization without testbench < 10 slices

Effective external interface bus width 32 bits

Effective user interface bus width 128 bits

Target memory device for verification

Simulation MT41J64M16LA_187E (Micron DDR3)

Hardware
MT41J64M16LA_187E (Micron DDR3)
EDE1116ACBG_8E_E (Elpida DDR2)

Notes:
1. The maximum data rate for the user interface depends on the specific device and PAR results for a given

design. The numbers shown here are representative of the performance that can be achieved with the
example design as documented in this application note.

http://www.xilinx.com

Reference Design

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 10

Reference
Design

The reference design for this application note can be found at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=147378

Reference Design Checklist

The checklist in Table 2 indicates the tool flow and verification procedures used for the
reference design.

Conclusion The MCB addresses the memory interface needs for the majority of Spartan-6 FPGA
applications by providing a simple means of interfacing to the most common, lowest cost, and
lowest power SDRAM memory standards. However, some applications with higher memory
bandwidth or density requirements can benefit from using memory interfaces wider than the
16-bits offered by a single MCB. This application note describes how to merge the operation of
two or more MCBs to implement effective 32-bit or wider memory interfaces. Each MCB still
operates at full performance (up to 800 Mb/s), allowing the user application to realize the full
benefit of using these dedicated embedded memory controllers for wider interfaces.

References 1. UG388, Spartan-6 FPGA Memory Controller User Guide

2. UG416, Spartan-6 FPGA Memory Interface Solutions User Guide

3. DS162, Spartan-6 Data Sheet

Table 2: Reference Design Checklist

Parameter Description

General

Developer Xilinx

Target devices Spartan-6 LX and LXT FPGAs

Source code provided Yes

Source code format Verilog

Other IP incorporated in reference design MIG generated IP: MCB interface wrappers

Simulation

Functional simulation performed Yes

Timing simulation performed No

Testbench format Verilog

Simulator Modelsim 6.5c

Implementation

Synthesis XST (ISE® design tools v12.1)

Implementation ISE design tools v12.1

Static timing analysis performed Yes

Hardware Verfication

Hardware verified Yes

Hardware platform used for verification SP601 board

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=147378
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf

Revision History

XAPP496 (v1.0) June 3, 2010 www.xilinx.com 11

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

06/03/10 1.0 Initial Xilinx release.

http://www.xilinx.com

	Creating Wider Memory Interfaces Using Multiple Spartan-6 FPGA Memory Controller Blocks
	Summary
	Introduction
	Design Overview
	Implementation Details
	Reference Design Guidelines
	New Wrapper Creation (memc13_wrapper.v)
	New Clock Infrastructure Block (memc13_infrastructure.v)
	New Testbench Block (memc13_tb_top.v)
	Changes to Top-Level Example Design Block (example_top.v)
	Other Changes for Simulation and Implementation

	Design Utilization and Performance
	Reference Design
	Reference Design Checklist

	Conclusion
	References
	Revision History
	Notice of Disclaimer

